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Let [n] ={1,2,...,n}. A partition of [n] into k blocks is
p=S51/.../Sk were [n] =;S; and S; # () for all i. The Stirling
numbers of the second kind are

S(n,k) =#{p| p is a partition of [n] into k blocks}.

Ex. If n = 3 then

k 1 2 3
p | 123]1/23, 2/13, 3/12 | 1/2/3
SG.K)| 1 3 1

Let &, denote the symmetric group of permutations 7 of [n]. The
Stirling numbers of the first kind are

s(n, k) = (=1)""%#{n | 7 € &, has k disjoint cycles}.

Ex. If n = 3 then

k 1 2 3
™ 1(1,2,3), (1,3,2) | (1)(2,3), (2)(1,3), (3)(1,2) | (1)(2)(3)
s(3, k) 2 -3 1




Let x, = {x1,...,xn} be a set of commuting variables. The degree
of a monomial m = x{“ ...xf is degm = Y. k;. Define complete
homogeneous symmetric polynomials by

hk(xn) = Z m.

deg m=k
Ex.
k [ 1 | 2 | 3
h3,k(Xk) h2(X1) = X12 h]_(X2) = X1 + X2 ho(Xg) =1
hsx(1, ... k) 1 3 1
Proposition

We have S(n, k) = h,—(1,2,..., k).
Proof. Induct on n using the recursions
S(n,k) =S(n—1,k—1)+ kS(n—1,k)

and
hi(xn) = hi(xn—1) + Xnhk—1(xs)
to get the result. O



Define elementary symmetric polynomials by

ek(xn) = Z m.

deg m=k,m square free

Ex.

k [ 1 | 2 | 3
(—1)3*ke3,k(xQ) e(x2) = x1x2 | —e1(x2) = —(x1 + x2) | eo(x2) =
(—1)3ke3 1 (1,2) 2 -3 1

Proposition

We have s(n, k) = (=1)" ke, x(1,2,...,n—1).



Let P be a finite poset with a minimum element 0, and a rank
function where for x € P

rk x = length of any maximal 0—x chain.
Let
M, = set of partitions p of [n] ordered by refinement.

Ex. if n = 3 then
123

My = 12/3 1/23

1/2/3

So ifp:51/.../5kel'lnthen

rtkp=n—k.



The Whitney numbers of the 2nd kind for P are
WP, k)= ) 1=4#{xeP|rkx=k}.
rk x=k
The Mébius function of P is defined by 11(0) = 1 and for x > 0
p(x) ==> ply) <= Y uly) =05
y<x y<x
The Whiney numbers of the 1st kind for P are

w(P k)= Y u(x).

rk x=k
Ex. W(M3,k): 1 123 2 w(Ms, k) : 2

3 (D12/3 €D »1/23C) -3

1 1/2/3@ 1

Proposition
We have W (M ,, k) = S(n,n— k) and w(l,, k) =s(n,n—k). O



A hyperplane in C" is a subspace H with dmH =n—-1. A

hyperplane arrangement is a finite set A = {Hs,..., Hx} of

hyperplanes. The braid arrangement in C" is
Brp={xi=x;|1<i<j<n}.

The intersection lattice L(.A) of an arrangement is all subspaces
W C C" which can be obtained as the intersection of some of the
hyperplanes in A ordered by reverse inclusion.

Ex. We have Brs = {x1 = xp, x1 = x3, X2 = x3}, with lattice

X1 = X2 = X3 123

X1 = X2

I

12/3

c3 1/2/3
Proposition
We have L(Br,) = I, as posets. O



A pseudoreflection is a linear map M : C" — C" which fixes a
hyperplane and is of finite order. A complex reflection group G is a
group generated by pseudoreflections. Call G irreducible if its only
G-invariant subspaces are C" and the origin, and n is called G's
rank. Shephard and Todd classified the finite irreducible complex
reflection groups into 3 infinite families and 34 exceptionals.

G(m, p,n) := group of all n x n complex matrices M satisfying

1. Each row and column of M contains exactly one nonzero
entry, say (; in row /.

2. Each (; is an mth root of unity.
3. We have p|m and ((1---¢p)™P = 1.

Ex. If
0 —/ 0 0 —/ 0 a a
M = i 0 0 then i 0 O a | = | ia
0 01 0 01 b b

So M fixes xo = ix; and M? = I. Also M € G(4,p,3) for any pl|4.



Note that in G(1,1,n) we have (; = 1. So G(1,1,n) = &,. This
is called type A.

Given any finite complex reflection group G we let

A(G) = {H | H a fixed hyperplane of a pseudoreflection in G},
L(G) = intersection lattice of A(G).

If G is irreducible of rank n then it's Stirling numbers of the first
and second kinds are, respectively,

s(G,k) = w(L(G),n— k) and S(G,k)= W(L(G),n— k).

Theorem (Orlik-Solomon, 1980)

If G is a finite, irreducible complex reflection group with
coexponents ej, ..., e, then

s(G, k) = (=1)"%e,_i(ef,...,€).



For S(G, k) things are more complicated.

Lemma
The reflecting hyperplanes of G(m, p, n) are of the form

1. x; = (xj for ("™ =1 and distinct i, j € [n],
2. x; =0 for i € [n] in the case p < m.

Ex. In G(4,1,3) the pseudoreflections

0 —i 0 1 00
M = i 0 0 and N=|0 1 0
0 01 0 0

have corresponding hyperplanes
X = fX1 and X3 = 0.
Theorem (S-Swanson)

Let G = G(m,p,n).

 hpk(L,m+1,...,km+1) := h(m, k, n)
5(6, k) = { h(m, k,n) — nh,__1(m,2m, ... km)

for p < m,
for p = m.



Is there a way to interpret S(G, k) in terms of partitions? Consider
G = G(2,1,n) = B,,. The hyperplanes of B, are of three types

xi=Xxj, Xi=—x;, x;=0.

Corresponding partitions p of (n) = {0,+£1,...,£n} will have
1. a block containing i,/ and a different block containing —i, —j,
2. a block containing i, —j and a different block containing —i, j,
3. the bock containing 0 also contains =+i.

Ex. In C° subspace (x; = x3 = —x4) N (x5 = 0) has partition

p=0,-55/13-4/—1,-34/2/—2.

Partition p = So/51/S2/ ... /Sak of (n) is type B, if
1. 0 € Sp, and if i € Sp then also —i € Sy,
2. ng = _52m—1 for m Z 1.

Theorem (Zaslavsky, 1982)
S(Bp, k) is the number of type B, partitions with 2k + 1 blocks.

S-Swanson have a generalization of this result to all G(m, p, n)
partitions of the elements of [n] colored in m colors.



The symmetric algebra in n variables is
Sym(x,) = {p(xn) € Q[xn] invariant under permutation of variables}.
For k > 0, the power sum symmetric polynomials are
pr(n) = xf + x5 + -+ xk.
The coinvariant algebra is

Qxn]
(p1(n), p2(n), - .., pn(n))
If R = @k>0Rx is a graded algebra then its Hilbert series is

Hilb R = "dim Ry ¢*.
k>0

The standard g-analogues of n and n! are

[nlg=1+q+--+q"},

[n]g! = [Hq[2]g -~ [n]q!
Theorem (Chavalley, 1955)

We have
Hilb(R,) = [n]q!



Let t, = {61,...,0,} be anti- commuting variables which
commute with the x;. For kK > 0, let

spk(n) = X1k91 —|—X§(92 + - —|—X,I,(9,,.
The super coinvariant algebra is

Q[XI‘H tn]
<p1(n)7 sy pn(n)7 SpO(n)7 R 75Pn—1('7)>
Define q-Stirling numbers of the second kind as

S[n, klg = hn—i([1q, [2g; - - - ; [K]q)-

Theorem (Rhoades-Wilson, 2023)
Using q and t to track the degree in x, and t,,, respectively,

Hilb(SRs) = > [nlq!S[n, kqt™ *.
k>0

SR, =

There is a basis for R,, called the Artin basis which immediately
gives Hilb(R,). S-Swanson and independently Bergeron-Li-
Machachek-Sulzgriiber-Zabrocki have an Artin set for SR, which,
if it can be proved a basis, will immediately yield Hilb(SR,).
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