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Let [n] = {1, 2, . . . , n}. A partition of [n] into k blocks is
ρ = S1/ . . . /Sk were [n] = ⊎iSi and Si ̸= ∅ for all i . The Stirling
numbers of the second kind are

S(n, k) = #{ρ | ρ is a partition of [n] into k blocks}.

Ex. If n = 3 then

k 1 2 3

ρ 123 1/23, 2/13, 3/12 1/2/3

S(3, k) 1 3 1

Let Sn denote the symmetric group of permutations π of [n]. The
Stirling numbers of the first kind are

s(n, k) = (−1)n−k#{π | π ∈ Sn has k disjoint cycles}.

Ex. If n = 3 then

k 1 2 3

π (1, 2, 3), (1, 3, 2) (1)(2, 3), (2)(1, 3), (3)(1, 2) (1)(2)(3)

s(3, k) 2 −3 1



Let xn = {x1, . . . , xn} be a set of commuting variables. The degree
of a monomial m = xk11 . . . xknn is degm =

∑
i ki . Define complete

homogeneous symmetric polynomials by

hk(xn) =
∑

degm=k

m.

Ex.

k 1 2 3

h3−k(xk) h2(x1) = x21 h1(x2) = x1 + x2 h0(x3) = 1

h3−k(1, . . . , k) 1 3 1

Proposition

We have S(n, k) = hn−k(1, 2, . . . , k).

Proof. Induct on n using the recursions

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k)

and
hk(xn) = hk(xn−1) + xnhk−1(xn)

to get the result.



Define elementary symmetric polynomials by

ek(xn) =
∑

degm=k,m square free

m.

Ex.

k 1 2 3

(−1)3−ke3−k(x2) e2(x2) = x1x2 −e1(x2) = −(x1 + x2) e0(x2) = 1

(−1)3−ke3−k(1, 2) 2 −3 1

Proposition

We have s(n, k) = (−1)n−ken−k(1, 2, . . . , n − 1).



Let P be a finite poset with a minimum element 0̂, and a rank
function where for x ∈ P

rk x = length of any maximal 0̂–x chain.

Let

Πn = set of partitions ρ of [n] ordered by refinement.

Ex. if n = 3 then

1/2/3

12/3 13/2 1/23

123

Π3 =

So if ρ = S1/ . . . /Sk ∈ Πn then

rk ρ = n − k.



The Whitney numbers of the 2nd kind for P are

W (P, k) =
∑

rk x=k

1 = #{x ∈ P | rk x = k}.

The Möbius function of P is defined by µ(0̂) = 1 and for x > 0̂

µ(x) = −
∑
y<x

µ(y) ⇐⇒
∑
y≤x

µ(y) = δx ,0̂.

The Whiney numbers of the 1st kind for P are

w(P, k) =
∑

rk x=k

µ(x).

Ex. W (Π3, k) : 1

3

1

w(Π3, k) : 2

−3

11/2/3

12/3 13/2 1/23

123

1

−1 −1 −1

2

Proposition

We have W (Πn, k) = S(n, n− k) and w(Πn, k) = s(n, n− k).



A hyperplane in Cn is a subspace H with dimH = n − 1. A
hyperplane arrangement is a finite set A = {H1, . . . ,Hk} of
hyperplanes. The braid arrangement in Cn is

Brn = {xi = xj | 1 ≤ i < j ≤ n}.

The intersection lattice L(A) of an arrangement is all subspaces
W ⊆ Cn which can be obtained as the intersection of some of the
hyperplanes in A ordered by reverse inclusion.
Ex. We have Br3 = {x1 = x2, x1 = x3, x2 = x3}, with lattice

C3

x1 = x2 x1 = x3 x2 = x3

x1 = x2 = x3

∼=

1/2/3

12/3 13/2 1/23

123

Proposition

We have L(Brn) ∼= Πn as posets.



A pseudoreflection is a linear map M : Cn → Cn which fixes a
hyperplane and is of finite order. A complex reflection group G is a
group generated by pseudoreflections. Call G irreducible if its only
G -invariant subspaces are Cn and the origin, and n is called G ’s
rank. Shephard and Todd classified the finite irreducible complex
reflection groups into 3 infinite families and 34 exceptionals.

G (m, p, n) := group of all n × n complex matrices M satisfying

1. Each row and column of M contains exactly one nonzero
entry, say ζi in row i .

2. Each ζi is an mth root of unity.

3. We have p|m and (ζ1 · · · ζn)m/p = 1.

Ex. If

M =

 0 −i 0
i 0 0
0 0 1

 then

 0 −i 0
i 0 0
0 0 1

 a
ia
b

 =

 a
ia
b

 .

So M fixes x2 = ix1 and M2 = I . Also M ∈ G (4, p, 3) for any p|4.



Note that in G (1, 1, n) we have ζi = 1. So G (1, 1, n) ∼= Sn. This
is called type A.

Given any finite complex reflection group G we let

A(G ) = {H | H a fixed hyperplane of a pseudoreflection in G},
L(G ) = intersection lattice of A(G ).

If G is irreducible of rank n then it’s Stirling numbers of the first
and second kinds are, respectively,

s(G , k) = w(L(G ), n − k) and S(G , k) = W (L(G ), n − k).

Theorem (Orlik-Solomon, 1980)

If G is a finite, irreducible complex reflection group with
coexponents e∗1 , . . . , e

∗
n then

s(G , k) = (−1)n−ken−k(e
∗
1 , . . . , e

∗
n).



For S(G , k) things are more complicated.

Lemma
The reflecting hyperplanes of G (m, p, n) are of the form

1. xi = ζxj for ζ
m = 1 and distinct i , j ∈ [n],

2. xi = 0 for i ∈ [n] in the case p < m.

Ex. In G (4, 1, 3) the pseudoreflections

M =

 0 −i 0
i 0 0
0 0 1

 and N =

 1 0 0
0 1 0
0 0 i


have corresponding hyperplanes

x2 = ix1 and x3 = 0.

Theorem (S-Swanson)

Let G = G (m, p, n).

S(G , k) =

{
hn−k(1,m + 1, . . . , km + 1) := h(m, k , n) for p < m,
h(m, k, n)− nhn−k−1(m, 2m, . . . , km) for p = m.



Is there a way to interpret S(G , k) in terms of partitions? Consider
G = G (2, 1, n) = Bn. The hyperplanes of Bn are of three types

xi = xj , xi = −xj , xi = 0.

Corresponding partitions ρ of ⟨n⟩ = {0,±1, . . . ,±n} will have

1. a block containing i , j and a different block containing −i ,−j ,

2. a block containing i ,−j and a different block containing −i , j ,

3. the bock containing 0 also contains ±i .

Ex. In C5 subspace (x1 = x3 = −x4) ∩ (x5 = 0) has partition

ρ = 0,−5, 5 / 1, 3,−4/− 1,−3, 4 / 2/− 2.

Partition ρ = S0/S1/S2/ . . . /S2k of ⟨n⟩ is type Bn if

1. 0 ∈ S0, and if i ∈ S0 then also −i ∈ S0,

2. S2m = −S2m−1 for m ≥ 1.

Theorem (Zaslavsky, 1982)

S(Bn, k) is the number of type Bn partitions with 2k + 1 blocks.

S-Swanson have a generalization of this result to all G (m, p, n)
partitions of the elements of [n] colored in m colors.



The symmetric algebra in n variables is

Sym(xn) = {p(xn) ∈ Q[xn] invariant under permutation of variables}.
For k ≥ 0, the power sum symmetric polynomials are

pk(n) = xk1 + xk2 + · · ·+ xkn .

The coinvariant algebra is

Rn =
Q[xn]

⟨p1(n), p2(n), . . . , pn(n)⟩
.

If R = ⊕k≥0Rk is a graded algebra then its Hilbert series is

HilbR =
∑
k≥0

dimRk qk .

The standard q-analogues of n and n! are

[n]q = 1 + q + · · ·+ qn−1,

[n]q! = [1]q[2]q · · · [n]q!
Theorem (Chavalley, 1955)

We have
Hilb(Rn) = [n]q!



Let tn = {θ1, . . . , θn} be anti- commuting variables which
commute with the xi . For k ≥ 0, let

spk(n) = xk1 θ1 + xk2 θ2 + · · ·+ xkn θn.

The super coinvariant algebra is

SRn =
Q[xn, tn]

⟨p1(n), . . . , pn(n), sp0(n), . . . , spn−1(n)⟩
.

Define q-Stirling numbers of the second kind as

S [n, k]q = hn−k([1]q, [2]q, . . . , [k]q).

Theorem (Rhoades-Wilson, 2023)

Using q and t to track the degree in xn and tn, respectively,

Hilb(SRn) =
∑
k≥0

[n]q!S [n, k]qt
n−k .

There is a basis for Rn called the Artin basis which immediately
gives Hilb(Rn). S-Swanson and independently Bergeron-Li-
Machachek-Sulzgrüber-Zabrocki have an Artin set for SRn which,
if it can be proved a basis, will immediately yield Hilb(SRn).
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